О методике обучения учащихся решению нестандартных алгебраических задач.

«Чтобы купить вещь, нужно уплатить 19 р. У покупателя только трехрублёвые купюры, у кассира только десятирублевые. Может ли покупатель расплатиться за покупку? А если у кассира только пятирублевые купюры?»

Большой интерес, являющийся для учащихся стимулом для приобретения умений и навыков решения неопределенных уравнений первой степени с двумя неизвестными в натуральных и целых числах, вызывает, как правило, у учащихся VII класса следующая задача:

«В комнате стоят стулья и табуретки. У каждой табуретки три ножки, у каждого стула четыре ножки. Когда на всех стульях и табуретках сидят люди, в комнате 39 «ног». Сколько стульев и табуреток в комнате?» (Если стульев х, табуреток у, то имеем уравнение 4х + 3у + 2 (х + у) = 39, откуда 5у = 39 – 6х, х = 4, у = 3.) Много интересных задач на соответствующую тематику имеется в журнале «Квант».

Мы понимаем, конечно, что нельзя приучать учащихся решать только те задачи, которые вызывают у них интерес. Но нельзя и забывать, что такие задачи учащийся решает легче и свой интерес к решению одной или нескольких задач он может в дальнейшем перенести и на «скучные» разделы, неизбежные при изучении любого предмета, в том числе и математики.

Таким образом, учитель, желающий научить школьников решать задачи, должен, на наш взгляд, вызвать у них интерес к задаче, убедить, что от решения математической задачи можно получить такое же удовольствие, как от разгадывания кроссворда или ребуса.

Задачи не должны быть слишком легкими, но и не должны быть слишком трудными, так как учащиеся, не решив задачу или не разобравшись в решении, предложенном учителем, могут потерять веру в свои силы. Не следует предлагать учащимся задачу, если нет уверенности, что они смогут ее решить.

Ну а как же помочь учащемуся научиться решать задачи, если интерес к решению задач у него есть и трудности решения его не пугают? В чем должна заключаться помощь учителя ученику, не сумевшего решить интересную для него задачу? Как эффективным образом направить усилия ученика, затрудняющегося самостоятельно начать или продолжить решение задачи?

Мы считаем, что не следует идти по самому легкому в этом случае пути — познакомить ученика с готовым решением. Не следует и подсказывать, к какому разделу школьного курса математики относится предложенная задача, какие известные учащимся свойства и теоремы нужно применить при решении.

Решение нестандартной задачи — очень сложный процесс, для успешного осуществления которого учащийся должен уметь думать, догадываться. Необходимо также хорошее знание фактического материала, владение общими подходами к решению задач, опыт в решении нестандартных задач.

В процессе решения каждой задачи и ученику, решающему задачу, и учителю, обучающему решению задач, целесообразно четко разделять четыре ступени: 1) изучение условия задачи; 2) поиск плана решения и его составление; 3) осуществление плана, то есть оформление найденного решения; 4) изучение полученного решения — критический анализ результата решения и отбор полезной информации.

Даже при решении несложной задачи учащиеся много времени тратят на рассуждения о том, за что взяться, с чего начать. Чтобы помочь учащимся найти путь к решению задач, учитель должен уметь поставить себя на место решающего задачу, попытаться увидеть и понять источник его возможных затруднений, направить его усилия в наиболее естественное русло. Умелая помощь ученику, оставляющая ему разумную долю самостоятельной работы, позволит учащемуся развить математические способности, накопить опыт, который в дальнейшем поможет находить путь к решению новых задач.

«Лучшее, что может сделать учитель для учащегося, состоит в том, чтобы путем неназойливой помощи подсказать ему блестящую идею… Хорошие идеи имеют своим источником прошлый опыт и ранее приобретенные знания… Часто оказывается уместным начать работу с вопроса: «Известна ли вам какая-нибудь родственная задача?» (Пойа Д.). Таким образом, хорошим средством обучения решению задач, средством для нахождения плана решения являются вспомогательные задачи. Умение подбирать вспомогательные задачи свидетельствует о том, что учащийся уже владеет определенным запасом различных приемов решения задач. Если этот запас не велик (что вполне очевидно для учащихся VII—VIII классов), то учитель, видя затруднения учащегося, должен сам предложить вспомогательные задачи. Умело поставленные вспомогательные вопросы, вспомогательная задача или система вспомогательных задач помогут понять идею решения. Необходимо стремиться к тому, чтобы учащийся испытал радость от решения трудной для него задачи, полученного с помощью вспомогательных задач или наводящих вопросов, предложенных учителем.

Перейти на страницу: 1 2 3


Разделы

Новое на сайте

Copyright (c) 2019 www.teachguide.ru. All rights reserved.